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Abstract. We construct a consistent quantum field theory of a free massless (pseudo)scalar field in 1 + 1-
dimensional space-times free of infrared divergences. We show that in such a quantum field theory (i) a
continuous symmetry of (pseudo)scalar field translations is spontaneously broken, (ii) Goldstone bosons
appear as quanta of a free massless (pseudo)scalar field and (iii) there is a non-vanishing spontaneous
magnetization. In spite of the existence of a spontaneous magnetization the main inequality between
vacuum expectation values of certain operators which have been used for the derivation of the Mermin–
Wagner–Hohenberg theorem (C. Itzykson and J.-M. Drouffe, Statistical field theory, Vol. I, 1989, pp.
219–224) is fulfilled.

1 Introduction

As has been noted by Klaiber in his seminal paper [1] de-
voted to the solution of the massless Thirring model [2,3]
within the operator formalism, the main problem of quan-
tum field theories in 1 + 1-dimensional space-time is the
infrared divergence of the two-point Wightman functions
of a free massless (pseudo)scalar field ϑ(x)

D(+)(x) = 〈0|ϑ(x)ϑ(0)|0〉 = 1
2π

∫ ∞

−∞

dk1

2k0 e
−ik·x

= − 1
4π

ln[−µ2x2 + i0 · ε(x0)],

D(−)(x) = 〈0|ϑ(0)ϑ(x)|0〉 = 1
2π

∫ ∞

−∞

dk1

2k0 e
+ik·x

= − 1
4π

ln[−µ2x2 − i0 · ε(x0)], (1.1)

where ε(x0) is the sign function, x2 = (x0)2 − (x1)2,
k · x = k0x0 − k1x1, k0 = |k1| is the energy of a free
massless (pseudo)scalar quantum with momentum k1 and
µ is the infrared cut-off reflecting the infrared divergence
of the Wightman function (1.1)1. This was already stated
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1 Further in order to underscore the dependence of the
two-point Wightman functions of the scale µ we will denote
D(±)(x) → D(±)(x;µ)

by Klaiber [1]: “If one wants to solve the Thirring model,
one has to overcome this problem.”

The problem of the infrared divergence of the Wight-
man function of a free massless (pseudo)scalar field (1.1)
has next been reformulated by Coleman [4] as the absence
of Goldstone bosons and, correspondingly, of a sponta-
neously broken continuous symmetry in 1+1-dimensional
space-time.

Recently [5] we have shown that Coleman’s statement
concerning the absence of a spontaneously broken continu-
ous symmetry in 1+1-dimensional space-time is question-
able. Indeed, the main distinction of a spontaneously bro-
ken continuous symmetry from an unbroken one is in the
appearance of massless Goldstone bosons [6]. According to
Goldstone’s theorem [6], Goldstone bosons accompany the
spontaneous breaking of a continuous symmetry. In this
connection Coleman [4] argued that in a 1+1-dimensional
quantum field theory of a massless (pseudo)scalar field
there are no Goldstone bosons. In order to prove this state-
ment Coleman considered a quantum field theory of a free
massless (pseudo)scalar field ϑ(x) with the Lagrangian

L(x) = 1
2
∂µϑ(x)∂µϑ(x), (1.2)

where x = (x0, x1) is a 2-vector. The equation of motion
of the ϑ field reads

✷ϑ(x) = 0. (1.3)

The Lagrangian (1.2) is invariant under field translations
[5,7]

ϑ(x) → ϑ′(x) = ϑ(x) − 2αA, (1.4)
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where αA is an arbitrary parameter. The conserved cur-
rent associated with these field translations is equal to

jµ(x) = ∂µϑ(x). (1.5)

The total charge is defined by the time component of jµ(x)
[5,7]

Q(x0) = lim
L→∞

∫ L/2

−L/2
dx1 ∂

∂x0ϑ(x
0, x1), (1.6)

where L is the volume occupied by the system.
It is well known that the spontaneous breaking of a

continuous symmetry occurs when the ground state of
the system is not invariant under the symmetry group
[6,8]. The ground state of the system described by the
Lagrangian (1.2) is not invariant under field translations
(1.4) [5]. Therefore, the field-translation symmetry should
be spontaneously broken and Goldstone bosons should ap-
pear [5].

Therewith, the non-invariance of the ground state of
the system can be demonstrated by acting with the oper-
ator exp{−2iαAQ(0)} on the vacuum wave function |0〉,
i.e. |αA〉 = exp{−2iαAQ(0)}|0〉 [5].

For the calculation of |αA〉 we use the expansion of the
massless (pseudo)scalar field ϑ(x) into plane waves [5]

ϑ(x) =
∫ ∞

−∞

dk1

2π
1

2k0 (a(k
1)e−ik·x + a†(k1)eik·x), (1.7)

where a(k1) and a†(k1) are annihilation and creation op-
erators obeying the standard commutation relation

[a(k1), a†(q1)] = (2π)2k0δ(k1 − q1). (1.8)

From (1.6) we obtain the total charge operator Q(0) [5]

Q(0) = − i
2
[a(0) − a†(0)]. (1.9)

Then, we get the wave function |αA〉:

|αA〉 = e−2iαAQ(0)|0〉 = e−αA[a(0)−a†(0)]|0〉. (1.10)

For the subsequent mathematical operations with the
wave functions |αA〉 it is convenient to use the regular-
ization procedure suggested by Itzykson and Zuber [7].
We define the regularized operator Q(0)R as follows [5]:

Q(0)R = lim
L→∞

∫ ∞

−∞
dx1 ∂

∂x0ϑ(x
0, x1)

∣∣∣∣∣
x0=0

e−(x1)2/L2
.

(1.11)
The regularized wave function |αA〉R reads then

|αA〉R = e−2iαAQ(0)R |0〉

= lim
L→∞

exp

{
− αAL

2
√
π

∫ ∞

−∞
dk1[a(k1) − a†(k1)]

×e−L2(k1)2/4

}
|0〉. (1.12)

The normal-ordered energy operator of the massless
(pseudo)scalar field described by the Lagrangian (1.2) is
equal to

Ĥ(x0) =
∫ ∞

−∞
dx1H(x0, x1)

=
∫ ∞

−∞
dx1[: π(x0, x1)ϑ̇(x0, x1) − L(x0, x1) :]

=
1
2

∫ ∞

−∞
dx :

[(
∂ϑ(x0, x1)

∂x0

)2

+
(
∂ϑ(x0, x1)

∂x1

)2
]
:

=
1
2

∫ ∞

−∞

dk1

2π
a†(k1)a(k1), (1.13)

where π(x) = ϑ̇(x) is the conjugate momentum and ϑ̇(x)
is the time derivative.

One can easily show that the wave functions |αA〉R
are eigenfunctions of the energy operator (1.13) for the
eigenvalue zero

Ĥ(x0)|αA〉R = E(αA)|αA〉R = 0. (1.14)

This shows that the energy of the vacuum state is in-
finitely degenerate, and the vacuum state depends on the
field translations (1.4). The wave functions of the vacuum
state |αA〉R and |α′

A〉R are not orthogonal to each other
for α′

A = αA and the scalar product R 〈α′
A|αA〉R amounts

to [5]

R 〈α′
A|αA〉R = e−(α′

A−αA)2 . (1.15)

Since the eigenvalue of the wave functions |αA〉 is zero,
they can be orthogonalized by any appropriate orthog-
onalization procedure as used in molecular and nuclear
physics.

We would like to emphasize that the results expounded
above are not related to the impossibility to determine the
two-point Wightman function (1.1) in the infrared region
of ϑ field fluctuations. In fact, the analysis of the non-
invariance of the vacuum wave function under the sym-
metry transformations (1.4) treats the massless (pseudo)-
scalar field at the tree level. This is an appropriate descrip-
tion, since the massless (pseudo)scalar field ϑ(x) is free,
no vacuum fluctuations are entangled, and the quanta of
the massless ϑ field are on-mass shell.

Following the Itzykson–Zuber analysis of the 1 + 1-
dimensional massless (pseudo)scalar field theory of the ϑ
field described by the Lagrangian (1.2), one can show [5]
that the translation symmetry (1.4) is spontaneously bro-
ken:
(i) the ground state is not invariant under the field-trans-
lation symmetry,
(ii) the energy of the ground state is infinitely degenerate,
and
(iii) Goldstone bosons appear and they are the quanta
of the ϑ field. Hence, all requirements for a continuous
symmetry to be spontaneously broken are available in
the 1 + 1-dimensional quantum field theory of a massless
(pseudo)scalar field described by the Lagrangian (1.2).
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This paper is organized as follows. In Sect. 2 we show
that the generating functional of Green functions of a
free massless (pseudo)scalar field ϑ(x) does not depend on
the infrared cut-off and the two-point causal and Wight-
man functions can be made finite in the infrared region.
In Sect. 3 we consider the low-frequency quanta of a free
massless (pseudo)scalar field as an ensemble which is de-
scribed by a wave function of a coherent state with a ran-
dom fluctuating field η(k1) [9]. We suggest that one treat
this random field as a hidden parameter of the theory.
We assume that all quantities such as correlation func-
tions defined in the quantum field theory of a free massless
(pseudo)scalar field ϑ(x) should be averaged over this pa-
rameter. In this way we derive Wightman functions which
are non-singular in the infrared region. In the conclusion
we discuss the relation of the infrared regularized quan-
tum field theory of a free massless (pseudo)scalar field
ϑ(x) to the Mermin–Wagner–Hohenberg (MWH) theorem
[10] stating the vanishing of the long-range order and a
spontaneous magnetization in two-dimensional field theo-
ries. We show that in the quantum field theory of the free
massless (pseudo)scalar field free of infrared divergences,
there is a non-vanishing spontaneous magnetization. We
demonstrate that in spite of the non-vanishing value of
the spontaneous magnetization the main inequality which
has been used for the derivation of the MWH theorem
is fulfilled. We argue that this result cannot be a coun-
terexample to the MWH theorem, since this theorem was
formulated only for non-zero temparature T = 0, whereas
a spontaneous magnetization in the quantum field theory
of the free massless (pseudo)scalar field is calculated for
T = 0. We accentuate that the infrared regularized quan-
tum field theory of a free massless (pseudo)scalar field
ϑ(x) agrees well with the results obtained in [5] for the so-
lution of the massless Thirring model with fermion fields
quantized in the chirally broken phase.

2 Generating functional of Green functions
of a free massless (pseudo)scalar field

It is well known that the solution of a quantum field
theory corresponds to the evaluation of any correlation
function. In the quantum field theory of a free massless
(pseudo)scalar field ϑ(x) any correlation function can be
evaluated by means of the generating functional of Green
functions defined by

Z[J ] =
〈
0
∣∣∣T (

ei
∫

d2xϑ(x)J(x)
) ∣∣∣0〉

=
∫

Dϑei
∫

d2x[(1/2)∂µϑ(x)∂µϑ(x)+ϑ(x)J(x)], (2.1)

where T is a time-ordering operator and J(x) is an exter-
nal source of the free massless (pseudo)scalar field ϑ(x).

In terms of Z[J ] an arbitrary correlation function of
the ϑ field can be defined as follows:

G(x1, . . . , xn; y1, . . . , yp)
= 〈0|F (ϑ(x1), . . . , ϑ(xn);ϑ(y1), . . . , ϑ(yp))|0〉

= F

(
−i

δ

δJ(x1)
, . . . ,−i

δ

δJ(xn)
;

− −i
δ

δJ(y1)
, . . . , i

δ

δJ(yp)

)
Z[J ]

∣∣∣
J=0

. (2.2)

As usual in the sine-Gordon, Thirring and XY -models
[11–16] one encounters the problem of the evaluation of
correlation functions of the following kind:

G(x1, . . . , xn; y1, . . . , yp)

=

〈
0
∣∣∣T ( n∏

j=1

e+iβϑ(xj)
p∏

k=1

e−iβϑ(yk))
∣∣∣0

〉
(2.3)

= exp


−iβ

n∑
j=1

δ

δJ(xj)
+ iβ

p∑
k=1

δ

δJ(yk)


Z[J ]

∣∣∣
J=0

.

Since the path integral over the ϑ field (2.1) is Gaussian,
it can be evaluated explicitly. The result reads

Z[J ] = lim
µ→0

exp
{
i
1
2

∫
d2xd2yJ(x)∆(x − y;µ)J(y)

}
,

(2.4)

where ∆(x − y;µ), the causal two-point Green function,
obeys the equation

✷∆(x − y;µ) = δ(2)(x − y) (2.5)

and is given by the expression

∆(x − y;µ) = − i
4π

ln[−µ2(x − y)2 + i0], (2.6)

where µ is the infrared cut-off that should be taken finally
in the limit µ → 0.

The presence of the infrared cut-off is related to the
infrared problem of a free massless (pseudo)scalar field
theory formulated by Klaiber [1] and Coleman [4]. The
removal of the infrared cut-off from the Green function
∆(x−y;µ) and its replacement by a finite scale M should
solve this infrared problem.

In order to understand the behavior of Z[J ] in the
limit µ → 0 we suggest to factorize the contribution of the
infrared cut-off µ by introducing a finite arbitrary scaleM .
This yields

Z[J ] = (2.7)

lim
µ→0

exp
{

1
8π

∫
d2xd2yJ(x)ln[−µ2(x − y)2 + i0]J(y)

}

= exp
{

1
8π

∫
d2xd2yJ(x)ln[−M2(x − y)2 + i0]J(y)

}

× lim
µ→0

exp

{
− 1
8π

ln
M2

µ2

(∫
d2xJ(x)

)2
}

= lim
µ→0

( µ

M

)(1/4π)(
∫

d2xJ(x))2

× exp

{
1
8π

∫
d2xd2yJ(x)ln[−M2(x − y)2 + i0]J(y)

}
.
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Since the power of the ratio µ/M is always positive, for
any arbitrary external source J(x) with a non-vanishing
1 + 1-dimensional volume integral∫

d2xJ(x) = 0, (2.8)

the generating functional Z[J ] vanishes in the limit µ → 0,
i.e. Z[J ] = 0.

In the Schwinger formulation of quantum field theory
[17] the generating functional of Green functions
Z[J ] given by (2.4) defines the amplitude of the vacuum–
vacuum transition 〈0+|0−〉J , i.e. Z[J ] = 〈0+|0−〉J . The
vanishing of Z[J ] corresponds to the vanishing of the am-
plitude of the vacuum–vacuum transition 〈0+|0−〉J = 0.
According to Schwinger [17] a quantum field theory with
〈0+|0−〉J = 0 has no meaning.

In order to make a quantum field theory of a free mass-
less (pseudo)scalar field ϑ(x) meaningful we have to get
a non-vanishing generating functional of Green functions
Z[J ]. This can be obtained by imposing the constraint∫

d2xJ(x) = 0. (2.9)

We would like to emphasize that due to this constraint
Z[J ] becomes invariant under the ϑ field translations (1.4)
as well as the Lagrangian (1.2).

For the massless pseudoscalar field ϑ(x) the constraint
(2.9) is fulfilled automatically. Indeed, due to the conser-
vation of parity the external source of the field ϑ(x) should
obey the relation J(x0, x1) = −J(x0,−x1). For a scalar ϑ
field, when J(x0, x1) = J(x0,−x1), the relation (2.2) can
be fulfilled for a rather broad class of analytical and gen-
eralized functions [18].

Recall that the constraint (2.9) has been implicitly
used for the evaluation of correlation functions (2.3) which
can be transcribed as follows

G(x1, . . . , xn; y1, . . . , yp)

=
〈
0
∣∣∣T (

ei
∫

d2xϑ(x)J(x;x1,...,xn;y1...,yp)
) ∣∣∣0〉 , (2.10)

where the current J(x) is defined by

J(x;x1, . . . , xn; y1 . . . , yp)

= β
n∑

j=1

δ(2)(x − xj) − β

p∑
k=1

δ(2)(x − yk). (2.11)

Substituting (2.11) in (2.9) we obtain∫
d2xJ(x;x1, . . . , xn; y1 . . . , yp) = β(n − p). (2.12)

It is well known [11–16] that for n = p the correlation
functions (2.10) do not depend on the infrared cut-off, in
turn, for n = p the dependence of the correlation functions
on µ leads to their vanishing in the limit µ → 0. Unfortu-
nately, nobody made an attempt to relate this result with

the vanishing of Z[J ] in the limit µ → 0 for an arbitrary
defined external source J(x).

As has been shown in [16] the constraint (2.9) has
turned out to be rather useful for the proof of non-per-
turbative renormalizability of the sine-Gordon model de-
scribed by the Lagrangian [5,11,16]

L(x) = 1
2
∂µϑ(x)∂µϑ(x) +

α

β2 (cosβϑ(x) − 1), (2.13)

where α and β are parameters of the model [5,11,16]. The
main peculiarity of the sine-Gordon model is the existence
of soliton solutions having the properties of fermions [19,
20] (see also [5]).

Hence, in order to make the quantum field theory of
a free massless (pseudo)scalar field meaningful the con-
straint (2.9) should be imposed. According to this con-
straint the generating functional of Green functions Z[J ]
reads

Z[J ]=exp
{

1
8π

∫
d2xd2yJ(x)ln[−M2(x − y)2 + i0]J(y)

}
.

(2.14)
In this form the generating functional of Green functions
Z[J ] is well defined. Thus, the constraint (2.2) provides
the independence of the generating functional of Green
functions of the free massless (pseudo)scalar field ϑ(x) of
the infrared cut-off. This makes the quantum field theory
described by Z[J ] in (2.14) meaningful.

Of course, a certain cautiousness is needed because
constraints on the external sources J(x) may lead to a loss
of information about the response of the quantum system.
Therefore, one has to be convinced that in the case of the
free massless (pseudo)scalar quantum field theory, defined
in 1+1-dimensional space-time, there is no loss of informa-
tion about the response of the free massless (pseudo)scalar
field to the external perturbations restricted by the con-
straint (2.9).

The physical meaning of the constraint (2.9) can be
easily understood in the momentum representation, where
the (pseudo)scalar field ϑ(x) and the external source J(x)
are expressed by their Fourier transforms ϑ̃(k) and J̃(k)

ϑ(x) =
∫

d2k

(2π)2
ϑ̃(k)e−ik·x,

J(x) =
∫

d2k

(2π)2
J̃(k)e−ik·x. (2.15)

By making a change of variables ϑ(x) → ϑ̃(k) the gener-
ating functional of Green function acquires the form

Z[J ] =
∫

Dϑ̃ exp
{
i
∫

d2k

(2π)2
(2.16)

×
[
1
2
(k2 + i0)ϑ̃(k)ϑ̃(−k) +ϑ̃(k)J̃(−k)

]}
.

Integrating over the ϑ̃ field we arrive at the expression

Z[J ] = exp

{
−i

1
2

∫
d2k

(2π)2
J̃(k)J̃(−k)
k2 + i0

}
(2.17)
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= exp
{

−i
1
2

∫
d2xd2yJ(x)

∫
d2k

(2π)2
eik(x−y)

k2 + i0
J(y)

}
.

Integrating over k0 we reduce the exponent to the form

Z[J ]

= exp
{

− 1
4π

∫ ∞

−∞

dk1

2|k1| J̃(−|k1|, k1)J̃(|k1|,−k1)
}

= exp
{

− 1
4π

∫
d2xd2yJ(x) (2.18)

×
[
θ(x0 − y0)

∫ ∞

−∞

dk1

2|k1|e
−i|k1|(x0−y0)+ik1(x1−y1)

+ θ(y0 − x0)
∫ ∞

−∞

dk1

2|k1|e
+i|k1|(x0−y0)−ik1(x1−y1)

]
J(y)

}
.

Substituting the external source J(x) defined by the mo-
mentum integral into (2.15) we obtain J̃(0) = 0. Hence,
the constraint (2.9) is equivalent to the vanishing of the
Fourier transform of the external source for zero 2-momen-
tum k = 0. Due to this the momentum integrals become
convergent in the infrared region k → 0. As a result the
generating functional Z[J ] does not depend on the infrared
cut-off µ. This makes Z[J ] well defined.

It is obvious that in n ≥ 3-dimensional space-time,
where the generating functional of Green functions Z[J ]
is defined by

Z[J ] = exp

{
−i

1
2

∫
dnk
(2π)2

J̃(k)J̃(−k)
k2 + i0

}
, (2.19)

the problem of the ill definition of the momentum integral
in the infrared region does not appear due to the contri-
bution of the measure dnk ∝ kn−1dk.

In order to clarify the physical meaning of the con-
straint J̃(0) = 0 let us consider the product ϑ̃(k)J̃(−k)
in (2.16). Due to J̃(0) = 0 we get ϑ̃(0)J̃(0) = 0. This
means that the zero-mode configuration ϑ̃(0) of the ϑ field
does not couple to an external source. In other words set-
ting J̃(0) = 0 we do not excite the zero-mode configura-
tion of the ϑ field. As a result this configuration does not
contribute to Z[J ] or differently to the amplitude of the
vacuum–vacuum transition 〈0+|0−〉J .

Such a treatment of the contribution of the zero-mode
configuration of the free massless (pseudo)scalar field is
equivalent to some extent to the procedure suggested by
Hasenfratz [21]2 to treat the zero-mode configuration of
self-coupled massless scalar fields in lattice σ-models with
O(N) symmetry defined in one and two dimensions in
finite and infinite volumes.

The role of the zero-mode configuration of the ϑ field
can be understood by analysing a mechanical analogy of a
massless (pseudo)scalar field. According to [22] the contin-
uous system described by the Lagrangian (1.2) is equiva-
lent to a one-dimensional chain of N harmonic oscillators

2 We are grateful to Oleg Borisenko for calling our attention
to Hasenfratz’s paper [21]

with equal masses, equal equilibrium separations and a
potential energy taking into account only nearest neigh-
bors. Their motion can be described by displacements
qi(i = 1, . . . , N) which couple to the external sources as∑N

i=1 qiJi. In the representation of normal coordinates
this system reduces to the set of N − 1 decoupled nor-
mal non-zero frequency mode configurations and one zero-
mode configuration proportional to the displacement of
the center of mass of N coupled harmonic oscillators Q0 ∝∑N

i=1 qi. The coupling of this zero-mode configuration to
the external sources is proportional to Q0

∑N
i=1 Ji. Since

at Ji = 0(i = 1, . . . , N) the zero-mode configuration does
not affect the evolution of the system, one can exclude a
motion of the center of mass even for Ji = 0(i = 1, . . . , N)
by the constraint

∑N
i=1 Ji = 0 which corresponds to (2.9).

This clarifies the physical meaning of the constraint
(2.9), that is, the removal of the zero-mode configuration
related to the motion of the center of mass of N coupled
harmonic oscillators, which in the continuous limit and at
N → ∞ are described by the Lagrangian (1.2). For a free
quantum system the exclusion of a collective motion of
a system as a structureless configuration does not affect
the evolution of the system caused by a relative motion in
it and, of course, does not lead to the loss of important
information about the response to perturbations induced
by external sources.

For a system of coupled quantum fields such an exclu-
sion would not be innocent. However, as has been shown
by Hasenfratz [21], the exclusion of the zero-mode con-
figuration of massless self-coupled scalar fields in one and
two dimensions in finite and infinite volumes described by
the σ-models with O(N) internal symmetry allows one to
construct a self-consistent and well-defined perturbation
theory.

The inclusion of a finite scale M instead of the in-
finitesimal scale µ leads to Fourier transform of the Wight-
man function free of infrared divergences. In order to con-
firm this statement we suggest the transcription of the
r.h.s. of (2.14) in the form

Z[J ] = exp
{
i
2

∫
d2xd2yJ(x)∆(x − y;M)J(y)

}
, (2.20)

where ∆(x− y;M) is given by (2.6) with the replacement
µ → M and obeys (2.5).

Now let us show that due to the finite scale M the
Wightman functions (1.1) become convergent in the in-
frared region, k1 → 0. As the causal Green function ∆(x;
M) is related to the Wightman functions D(±)(x;M) by
the standard relation [14]

∆(x;M) = iθ(+x0)D(+)(x;M) + iθ(−x0)D(−)(x;M),
(2.21)

the Wightman functions D(±)(x;M) are equal to

D(±)(x;M) = − 1
4π

ln[−M2x2 ± i0 · ε(x0)]. (2.22)

Since the r.h.s. of (2.22) can be treated as a limit,

D(±)(x;M) (2.23)
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=
1
2π

lim
µ→0

(K0(µ
√

−x2 ± i0 · ε(x0)) − K0(µλM )),

where we have denoted λM = 1/M , the Fourier transforms
of the Wightman functions are defined by (see Appendix
C of [16])

D(±)(x;M) = lim
µ→0

1
2π

∫ ∞

−∞

dk1

2
√
(k1)2 + µ2

(2.24)

× (e∓i
√

(k1)2+µ2x0±ik1x1 − cos(k1λM )).

Here we have used the integral representations of the Mc-
Donald function K0(z) [23].

Taking the limit µ → 0 we obtain

D(±)(x;M) =
1
2π

∫ ∞

−∞

dk1

2k0 (e
∓ik·x − cos(k1λM)). (2.25)

Thus, the Wightman functions (2.25) are obviously con-
vergent in the infrared region k1 → 0. This solves the
infrared problem of the free massless (pseudo)scalar field
theory pointed out by Klaiber [1] and Coleman [4].

3 Coherent states of low-frequency quanta
of a free massless (pseudo)scalar field

The knowledge of the generating functional of Green func-
tions Z[J ] is sufficient for the evaluation of any correlation
function in the quantum field theory under consideration.
According to (2.2) and (2.3) the evaluation of a correlation
function reduces to the calculation of functional deriva-
tives of Z[J ] with respect to the external source J(x). One
can easily show that the use of the constraint (2.9) dur-
ing the variation with respect to the external source J(x)
does not affect the final result. Therefore, the analysis of
the Wightman functions in terms of vacuum expectation
values of the (pseudo)scalar field ϑ(x) is no more required.

Nevertheless, to make our consideration of the infrared
divergences in the free massless (pseudo)scalar field theory
more complete we suggest a variant of the quantum field
theory of the free massless (pseudo)scalar field reproduc-
ing the two-point Wightman functions (2.25) by means of
the redefinition of the (pseudo)scalar field ϑ(x).

For the derivation of the term cos(k1λM ) in (2.25) at
the level of the redefinition of a quantum field ϑ(x) we
would like to notice that the wave function |αA〉R (1.12) of
the vacuum state looks like a wave function of a canonical
coherent state produced by a unitary transformation from
a fiducial vacuum state |0〉 [9]. Following this similarity
we suggest the description of the collective states of low-
frequency quanta of the free massless (pseudo)scalar field
ϑ(x), defined by the Lagrangian (1.2), in terms of coherent
states [9].

A collective state of low-frequency quanta of the mass-
less scalar field ϑ(x) we suggest to represent by a wave
function

|η〉 = eQ̂[η]|0〉. (3.1)

The operator Q̂[η] is defined by

Q̂[η] =
∫ ∞

−∞

dk1

2π
η(k1)
2k0 [a(k1) − a†(k1)], (3.2)

where η(k1) is an arbitrary function which we treat as
a random field variable. The η(k1) field is concentrated
in the infrared region close to k1 → 0 and is almost zero
everywhere for finite momenta. For example, in the case of
the vacuum wave functions |αA〉R the η(k1) field is defined
by Gaussian-like functions

ηαA
(k1) = −2

√
παAL|k1|e−L2(k1)2/4, (3.3)

where the spatial volume of the system L should tend to
infinity, L → ∞.

The wave function |η〉 is normalized to unity

〈η|η〉 = 1. (3.4)

The wave function (3.1) is constructed in complete anal-
ogy to the vacuum wave functions |αA〉R related to field
translations (1.4) caused by chiral rotations of massless
Thirring fermions [5].

The operators of annihilation and creation obey the
relations

eQ̂[η]a(k1)e−Q̂[η] = a(k1) + η(k1),

eQ̂[η]a†(k1)e−Q̂[η] = a†(k1) + η(k1). (3.5)

This implies that the wave function |η〉 is the eigenfunc-
tion of the annihilation operator a(k1) with the eigenvalue
η(k1) [9]

a(k1)|η〉 = −η(k1)|η〉. (3.6)

Using the relation

eA+B = e−(1/2)[A,B]eAeB (3.7)

one can reduce the wave function |η〉 of (3.1) to the stan-
dard form of a coherent state [9]

|η〉 = exp
{

− 1
2π

∫ ∞

−∞

dk1

2k0

1
2
η2(k1)

}

× exp
{∫ ∞

−∞

dk1

2π
η(k1)
2k0 a†(k1)

}
|0〉. (3.8)

The completeness condition can be represented by a path
integral over the η field [9]

1̂ =
∫

Dη|η〉〈η|, (3.9)

where 1̂ is a unit operator. Using the completeness con-
dition and the normalization of the fiducial vacuum state
wave function 〈0|0〉 = 1 we obtain

〈0|0〉 =
∫

Dη 〈0|η〉 〈η|0〉 (3.10)

=
∫

Dη exp
{

− 1
2π

∫ ∞

−∞

dk1

2k0 η
2(k1)

}
= 1.
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The exponent of the c-number factor in (3.10) is related
to the number of quanta of the massless (pseudo)scalar ϑ
field in the |η〉 state. In terms of creation and annihilation
operators the operator N̂ of the number of quanta reads

N̂ =
1
2π

∫ ∞

−∞

dk1

2k0 a
†(k1)a(k1). (3.11)

Using (3.6) we obtain

N [η] =
〈
η|N̂ |η

〉
=

1
2π

∫ ∞

−∞

dk1

2k0 η
2(k1). (3.12)

The energy of the state |η〉 is equal to

E[η] =
〈
η|Ĥ|η

〉
=

1
2

∫ ∞

−∞

dk1

2π
η2(k1). (3.13)

The action of the creation operator a†(k1) on the state |η〉
can be obtained by using (3.8) and reads

a†(k1)|η〉 = exp
{

− 1
2π

∫ ∞

−∞

dq1

2q0

1
2
η2(q1)

}
(3.14)

× exp
{

1
2π

∫ ∞

−∞

dq1

2q0 η(q
1)a†(q1)

}
a†(k1)|0〉.

The r.h.s. of this relation can be rewritten in the form of
a variational derivative with respect to η(k1):

a†(k1)|η〉 =
(
η(k1) +

δ

δη(k1)

)
|η〉, (3.15)

where we have used the definition

δη(q1)
δη(k1)

= (2π)2k0δ(k1 − q1). (3.16)

Since η(k1) is an auxiliary intrinsic, some kind of hidden,
parameter of a free massless (pseudo)scalar field theory, all
correlation functions should be averaged over the η field
fluctuations. Such an average we represent in the form of
the path integral over the η field fluctuations normalized
by the condition (3.10).

Using the random η field we introduce instead of ϑ(x)
a new quantum field ϑ(x; η) defined by

ϑ(x; η) =
1
2π

∫ ∞

−∞

dk1

2k0 (a(k
1)e−ik·x + a†(k1)eik·x)

+
1
2π

∫ ∞

−∞
dk1η(k1 − πM) (3.17)

×
√

cos((k1 − πM)λM )
2k0|k1 − πM | [a(k1) + a†(k1)].

Since the η(k1) is tangible only in the region of momenta
k1 comeasurable with zero, the shift of the argument k1 →
k1 −πM leads to a concentration of the integrand around
the momenta k1 � πM , where cos((k1 − πM)λM ) is pos-
itive. The contribution of the constant term in the defini-
tion of the ϑ field demonstrates the fact that the ϑ field

can be excited above the background by quanta with mo-
menta of order of the scale M .

Averaging over the η field fluctuations we obtain the
quantum field ϑ(x) defined by (1.7)

〈ϑ(x; η)〉 =
∫

Dηϑ(x; η) exp
{

− 1
2π

∫ ∞

−∞

dk1

2k0 η
2(k1)

}
= ϑ(x). (3.18)

Due the constraint (2.9) the additional contribution in
(3.17), independent on space-time coordinates and con-
taining the random η(k1) field, does not change the gen-
erating functional of Green functions (2.20). However, this
contribution turns out to be important for the derivation
of the term cos(k1λM ) in the regularized two-point Wight-
man functions (2.25), represented in terms of vacuum ex-
pectation values of the products of the ϑ(x; η) fields and
averaged over the random η field fluctuations. The regular-
ized two-point Wightman functions D(±)(x;M) we define
as follows:

D(+)(x;M) =
∫

Dη 〈0|ϑ(x; η)ϑ(0; η)|0〉

× exp
{

− 1
2π

∫ ∞

−∞

dk1

2k0 η
2(k1)

}

=
1
2π

∫ ∞

−∞

dk1

2k0 e
−ik·x

+
1
2π

∫ ∞

−∞
dk1

√
cos((k1 − πM)λM )

2k0|k1 − πM |

× 1
2π

∫ ∞

−∞
dq1

√
cos((q1 − πM)λM )

2q0|q1 − πM |

×
∫

Dηη(k1 − πM)η(q1 − πM)

× exp
{

− 1
2π

∫ ∞

−∞

dp1

2p0 η
2(p1)

}
,

D(−)(x;M) =
∫

Dη 〈0|ϑ(0; η)ϑ(x; η)|0〉

× exp
{

− 1
2π

∫ ∞

−∞

dk1

2k0 η
2(k1)

}

=
1
2π

∫ ∞

−∞

dk1

2k0 e
+ik·x

+
1
2π

∫ ∞

−∞
dk1

√
cos((k1 − πM)λM )

2k0|k1 − πM |

× 1
2π

∫ ∞

−∞
dq1

√
cos((q1 − πM)λM )

2q0|q1 − πM |

×
∫

Dηη(k1 − πM)η(q1 − πM)

× exp
{

− 1
2π

∫ ∞

−∞

dp1

2p0 η
2(p1)

}
. (3.19)
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For the integration over the η field fluctuations we use the
auxiliary integrals∫

Dη exp
{
− 1
2π

∫ ∞

−∞

dp1

2p0 η
2(p1)+

1
π

∫ ∞

−∞

dp1

2p0 f(p
1)η(p1)

}

= exp
{

1
2π

∫ ∞

−∞

dp1

2p0 f
2(p1)

}
. (3.20)

The integration of the quadratic terms in the η field in
(3.19) we perform with the help of a formula which can
be derived from (3.20)∫

Dη exp
{

− 1
2π

∫ ∞

−∞

dp1

2p0 η
2(p1)

}
× η(k1 − πM)η(q1 − πM)

=
1
4

δ

δf(k1 − πM)

× δ

δf(q1 − πM)
exp

{
1
2π

∫ ∞

−∞

dp1

2p0 f
2(p1)

} ∣∣∣∣∣
f=0

= (2π)|k1 − πM |δ(k1 − q1), (3.21)

where we have used the relations

δf(q1

δf(k1)
= (2π)2k0δ(k1 − q1),

δf(q1 − πM)
δf(k1 − πM)

= (2π)2|k1 − πM |δ(k1 − q1). (3.22)

The regularized two-point Wightman functions read

D(+)(x;M) =
1
2π

∫ ∞

−∞

dk1

2k0 (e
−ik·x − cos(k1λM)),

D(−)(x;M) =
1
2π

∫ ∞

−∞

dk1

2k0 (e
+ik·x − cos(k1λM)). (3.23)

This testifies the removal of infrared divergences in the
quantum field theory of the free massless (pseudo)scalar
field in 1 + 1-dimensional space-time.

4 Conclusion

We have shown that the quantum field theory of a free
massless (pseudo)scalar field in 1 + 1-dimensional space-
time does not really suffer from an infrared problem. The
generating functional of Green functions Z[J ] given by
(2.20) allowing one to calculate any correlation function
in the quantum field theory of the free massless (pseudo)-
scalar field ϑ(x) does not depend on the infrared cut-off.
This occurs due to a simple property of the external source
of the free massless pseudoscalar field to have a vanishing
integral over the 1+1-dimensional volume (2.9). The phys-
ical meaning of the constraint (2.9) can be easily clarified
in the momentum representation, where it corresponds to
a removal of a zero-mode configuration of the free mass-
less (pseudo)scalar field ϑ(x). According to a mechanical
analogy of the free massless (pseudo)scalar field ϑ(x) as a

chain of N linear self-coupled harmonic oscillators, a zero-
mode configuration of this system describes a motion of a
center of mass which does not affect the evolution of the
system and can be removed from the system without loss
of information about the response of the system to exter-
nal perturbations induced by external sources obeying the
constraint (2.9).

An analogous treatment of a zero-mode configuration
of massless self-coupled scalar fields, described by the σ-
models with internal O(N) symmetry and defined in one
and two dimensions, has been suggested by Hasenfratz
[21]. Hasenfratz has shown that the exclusion of the zero-
mode configuration has allowed one to construct a consis-
tent perturbation theory with correct Feynman rules.

By virtue of the constraint (2.9) the infrared cut-off µ
in the generating functional of Green functions (2.4) can
be replaced by an arbitrary finite scale M . The depen-
dence of Z[J ] on a finite scale M allows one to regularize
the causal two-point Green function of the ϑ field as well
as Wightman functions in the infrared region.

For the regularization of Wightman functions at the
level of a redefinition of the ϑ field we have used the tech-
nique of coherent states. We have assumed that the low-
frequency quanta of a free massless (pseudo)scalar field are
randomized and the wave function of the system of low-
frequency quanta can be described as a coherent state.
The coherent state of low-frequency quanta depends on a
randomized field η(k1) having tangible values only in the
close vicinity of zero momenta. Treating this random field
as a hidden parameter of an ensemble of low-frequency
quanta of the free massless (pseudo)scalar field ϑ(x) we
have assumed that the regularized quantities should be
obtained by averaging over the η field fluctuations.

Following this prescription we have introduced a new
field operator ϑ(x; η) (3.17) containing a translationary
invariant quantum contribution to the standard ϑ field ex-
panded into plane waves (1.7). This quantum contribution
is proportional to the random η field and vanishes when
averaged over the η field fluctuations. Defining Wightman
functions in terms of the new quantum field operators
ϑ(x; η) and averaging over the η field fluctuations we have
arrived at infrared convergent functions D(±)(x;M) de-
pending on a finite scale M . This solves the problem of
a consistent, infrared divergence-free, definition of a free
massless (pseudo)scalar field in 1 + 1-dimensional space-
time formulated by Klaiber [1] and Coleman [4].

In order to discuss the relation of the free massless
(pseudo)scalar field theory free of infrared divergences to
the MWH theorem we suggest the calculation of the vac-
uum expectation values of the operators e+iβϑ(x) and
e+iβ[ϑ(x)−ϑ(y)]. The calculation runs along these lines [5,
12–16]:〈
0
∣∣∣eiβϑ(x)

∣∣∣0〉 =
〈
0
∣∣∣eiβϑ(0)

∣∣∣0〉 = exp
{
β

δ

δJ(0)

}
Z[J ]

∣∣∣
J=0

= e(1/2)β
2i∆(0;M). (4.1)

The vacuum expectation value of the operator

e+iβ[ϑ(x)−ϑ(y)]
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can be calculated in analogous way and is equal to〈
0
∣∣∣T (e+iβ[ϑ(x)−ϑ(y)])

∣∣∣0〉
=

[
e(1/2)β

2i∆(0;M)
]2

e−β2i∆(x−y;M). (4.2)

In the infrared singular quantum field theory of the free
massless (pseudo)scalar field ϑ(x) the causal Green func-
tion i∆(0;µ) amounts to [5,12–16]

i∆(0;µ) = − 1
4π

ln
(
Λ2

µ2

)
, (4.3)

where Λ is the ultraviolet cut-off.
Due to this the correlation function (4.1) in the in-

frared singular quantum field theory of the free massless
(pseudo)scalar field ϑ(x) should read [5,12–16]

〈
0
∣∣∣eiβϑ(x)

∣∣∣0〉 =
〈
0
∣∣∣eiβϑ(0)

∣∣∣0〉 = lim
µ→0

(
µ2

Λ2

)β2/8π

= 0.

(4.4)

The r.h.s. of (4.4) vanishes for any value of the ultraviolet
cut-off Λ. In turn, the vacuum expectation value of the
operator e+iβ[ϑ(x)−ϑ(y)] calculated in the infrared singular
quantum field theory of the free massless (pseudo)scalar
field ϑ(x) contains the difference of the Green functions
∆(0;µ)−∆(x−y;µ) for which the infrared cut-off µ cancels
itself and the correlation function (4.2) turns out to be
independent of µ and is, therefore, finite in the limit µ →
0. This property has been used in the literature [7,13–15]
to draw a similarity between the MWH theorem and the
infrared singular quantum field theory of the free massless
(pseudo)scalar field ϑ(x).

In the infrared non-singular quantum field theory of
the free massless (pseudo)scalar field ϑ(x) the factor
e(1/2)β

2i∆(0;M) is equal to

e(1/2)β
2i∆(0;M) = lim

ε→0
(−M2ε2 + i0)β

2/8π = 0. (4.5)

Therefore, the vacuum expectation values (4.1) and (4.2)
vanish simultaneously due to the short-distance behavior,
or differently the ultraviolet divergences. In turn, accord-
ing to Coleman’s analysis of the sine-Gordon model [11]
ultraviolet divergences can be removed by renormaliza-
tion. Following Coleman [11] and removing the common
factor (4.5) we obtain the correlation functions〈

0
∣∣∣eiβϑ(0)

∣∣∣0〉 = 1, (4.6)〈
0
∣∣∣T (e+iβ[ϑ(x)−ϑ(y)])

∣∣∣0〉 = [−M2(x − y)2 + i0]−β2/4π.

The most general correlation function of the time-ordered
product of the operators e+iβϑ(xj)(j = 1, . . . , n) and
e−iβϑ(yk)(k = 1, . . . , p) given by (2.3) is equal to

G(x1, . . . , xn; y1, . . . , yp)

=

〈
0
∣∣∣T ( n∏

j=1

e+iβϑ(xj)
p∏

k=1

e−iβϑ(yk))
∣∣∣0

〉

= exp


−iβ

n∑
j=1

δ

δJ(xj)
+ iβ

p∑
k=1

δ

δJ(yk)


Z[J ]

∣∣∣
J=0

=
[
e(1/2)β

2i∆(0;M)
]n+p

× exp


β2

n∑
j<k

i∆(xj − xk;M) + β2
p∑

j<k

i∆(yj − yk;M)

− β2
n∑

j=1

p∑
k=1

i∆(xj − yk;M)


 . (4.7)

Removing the ultraviolet divergences by renormalization
[11] we arrive at the expression

G(x1, . . . , xn; y1, . . . , yp)

=

〈
0
∣∣∣T ( n∏

j=1

e+iβϑ(xj)
p∏

k=1

e−iβϑ(yk))
∣∣∣0

〉

= exp


β2

n∑
j<k

i∆(xj − xk;M) + β2
p∑

j<k

i∆(yj − yk;M)

− β2
n∑

j=1

p∑
k=1

i∆(xj − yk;M)


 (4.8)

=

n∏
j<k

[−M2(xj − xk)2]β
2/4π

p∏
j<k

[−M2(yj − yk)2]β
2/4π

n∏
j=1

p∏
k=1

[−M2(xj − yk)2]β
2/4π

.

The most natural way of a simultaneous removal of the
ultraviolet divergences is the use of dimensional or ana-
lytical regularization allowing one to set ∆(0;M) = 0 [5].

We would like to accentuate that since due to the con-
straint (2.9) the generating functional of Green functions
Z[J ] given by (2.14) (or (2.20)) is invariant under the scale
transformation M → M ′, the correlation functions (4.7)
are invariant under the scale transformation M → M ′
too. Of course, after the renormalization of ultraviolet
divergences carried out at the fixed normalization scale
M , the correlation functions (4.8) depend on M . How-
ever, this is normal for any massless quantum field theory,
since the correlation functions (4.8) cannot be measured
directly. The measurable quantities are the elements of
the S-matrix. In a free massless (pseudo)scalar field the-
ory the S-matrix is trivial and equal to unity, S = 1. The
former testifies the independence of the S-matrix on the
normalization scale M .

The unit value of the vacuum expectation value of the
operator e+iβϑ(0) in (4.6) can be explained as follows. Due
to the regularization of the field theory in the infrared re-
gion the ϑ field is not anymore randomized. It does not ac-
quire large classical values proportional to 2π, as has been
pointed out in [7,15], but varies smoothly around zero,
compatible with the vacuum fluctuations 〈0|ϑ(0)|0〉 = 0.
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The time-ordered correlation function of the operator
e+iβ[ϑ(x)−ϑ(y)] in (4.6) agrees completely with the results
obtained by various authors [12–15] and the results we got
in [5] for the solution of the massless and massive Thirring
model with fermion fields quantized in the chirally broken
phase. Recall that the chirally broken phase of the mass-
less Thirring model possesses the ground state [5] coin-
ciding fully with the ground state of the superconducting
phase in the Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity [24].

Now let us show that our approach to a quantum field
theory of a free massless (pseudo)scalar field ϑ(x) does
not contradict the MWH theorem. For this aim we make
the suggestion to turn to the proof of the MWH theorem
expounded in [13] (see Appendix 4.A, p. 219). We have to
show that the inequality (A.7) of [13], transcribed in our
notation in continuous Euclidean space for a free massless
(pseudo)scalar field theory formulated above, is fulfilled.

In our notation (A.7) of [13] can be transcribed in con-
tinuous Euclidean space as follows3:

β2[〈0| cosβϑ(0)|0〉]2(−i)∆(0ρ;M)
≤ 〈0| sinβϑ(0) sinβϑ(0ρ)|0〉 , (4.9)

where 0ρ = (ρ1, ρ2) is an infinitesimal two-dimensional Eu-
clidean vector, ∆(0ρ;M) is a Green function given by

−i∆(0ρ;M) =
1
2π

ln
(

1
Mρ

)
. (4.10)

Here ρ = (ρ2
1 + ρ2

2)
1/2 and M is a finite scale.

The inequality (4.9) is self-consistent. This can be ver-
ified in the limit β → 0. In fact, in the limit β → 0 the
inequality (4.9) becomes the equality corresponding to the
definition of the Wightman function of a free massless
(pseudo)scalar field ϑ(0ρ) in a two-dimensional Euclidean
space.

In order to show this we suggest to divide both sides
of (4.9) by β2. Then, taking the limit β → 0 we arrive at
the relation

−i∆(0ρ;M) ≤ 〈0|ϑ(0)ϑ(0ρ)|0〉 . (4.11)

Since by definition 〈0|ϑ(0)ϑ(0ρ)|0〉 = −(1/2π)ln(Mρ) is the
Wightman function D(0ρ;M) of a free massless (pseudo)-
scalar field ϑ(0ρ) in two-dimensional Euclidean space
(2.19), we are able to set D(0ρ;M) = −i∆(0ρ;M) = −(1/
2π)ln(Mρ). Therefore, the relation (4.11) should be re-
written in the form of the equality

D(0ρ;M) = −i∆(0ρ;M) = 〈0|ϑ(0)ϑ(0ρ)|0〉 . (4.12)

This confirms the self-consistency of the inequality (4.9).
According to Itzykson and Drouffe [13] the vacuum

expectation value 〈0| cosβϑ(0)|0〉 should be identified with
the spontaneous magnetization M,

M = 〈0| cosβϑ(0)|0〉 . (4.13)
3 This can be obtained by multiplying the inequality above
(A.7) of [13] by a factor ei�k·�ρ and integrating over �k at the limit
H → 0, where H is an external magnetic field

The vacuum expectation value of the r.h.s. of (4.9) is equal
to

〈0| sinβϑ(0) sinβϑ(0ρ)|0〉
=

1
2
eβ

2i∆(0;M)[e−β2i∆(�ρ;M) − e+β2i∆(�ρ;M)]. (4.14)

Using (4.1) for the calculation of the spontaneous magne-
tization M and (4.13) and (4.14) we recast the inequality
(4.9) into the form

eβ
2i∆(0;M)ln

(
1

Mρ

)

≤ π

β2 e
β2i∆(0;M)[(Mρ)−β2/2π − (Mρ)β

2/2π]. (4.15)

Renormalizing 〈0| cosβϑ(0)|0〉 and 〈0| sinβϑ(0) sinβϑ(0ρ)
|0〉, i.e. removing the constant divergent factors eβ

2i∆(0;M)

in both sides of (4.15) and getting M = 1, we obtain

ln
(

1
Mρ

)
≤ π

β2 [(Mρ)−β2/2π − (Mρ)β
2/2π]. (4.16)

This inequality is always fulfilled for ρ → 0 as required
by the derivation of the MWH theorem according to [13].
Thus, the renormalized spontaneous magnetization M =
1, obtained in our approach as a vacuum expectation value
of the operator cosβϑ(0), agrees with the inequality (4.9),
which is a continuous analogy of the lattice inequality used
for the derivation of the MWN theorem in [13]. We notice
that the renormalized spontaneous magnetization M = 1,
being the observable quantity, does not depend on the
normalization scale M .

It is seen that in the limit β → 0 the relation (4.16)
becomes an equality. This testifies the validity of our state-
ment given by (4.12).

We would like to emphasize that our result, M = 1,
does not contradict the MWH theorem, since it goes be-
yond the scope of the applicability of the MWH theorem
[10]. As has been pointed out by the authors [10], the
vanishing of the long-range order can be inferred only for
non-zero temperature T = 0 [10] and no conclusion about
its value can be derived for T = 0 [10]. Since spontaneous
magnetization and fermion condensation have been found
in the free massless (pseudo)scalar field theory, discussed
above, and the massless Thirring model in [5] at T = 0,
these results cannot be considered as counterexamples to
the MWH theorem.

Acknowledgements. This work was supported in part by Fonds
zur Förderung der Wissenschaftlichen Forschung P13997-TPH.

References

1. B. Klaiber, in Lectures in theoretical physics, Lectures de-
livered at the Summer Institute for Theoretical Physics,
University of Colorado, Boulder, 1967, edited by A. Barut
and W. Brittin (Gordon and Breach, New York 1968), Vol.
X, part A, pp. 141–176



M. Faber, A.N. Ivanov: On free massless (pseudo)scalar quantum field theory in 1 + 1-dimensional space-time 663

2. W. Thirring, Ann. Phys. (N.Y.) 3, 91 (1958)
3. V. Glaser, Nuovo Cim. 9, 990 (1958); W. Thirring, Nuovo
Cim. 9, 1007 (1958)

4. S. Coleman, Comm. Math. Phys. 31, 259 (1973)
5. M. Faber, A.N. Ivanov, Eur. Phys. J. C 20, 723 (2001),
hep-th/0105057

6. J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone,
A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962)

7. C. Itzykson, J.-B. Zuber, Quantum field theory (McGraw-
Hill, New York 1980), p. 525

8. See [7], pp. 519–521
9. John R. Klauder, Bo-Sture Skagerstam, Coherent states,
Applications in physics and mathematical physics (World
Scientific, Singapore 1985); John W. Negele, Henri Or-
land, Quantum many-particle systems (Addison-Wesley,
New York 1988); see [7], pp. 118–120

10. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133
(1966); P.C. Hohenberg, Phys. Rev. 158, 383 (1967); N.D.
Mermin, J. Math. Phys. 8, 1061 (1967)

11. S. Coleman, Phys. Rev. D 11, 2088 (1975)
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